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Abstract

Tools from the field of graph signal processing, in particular the graph Laplacian operator,

have recently been successfully applied to the investigation of structure-function relation-

ships in the human brain. The eigenvectors of the human connectome graph Laplacian,

dubbed “connectome harmonics”, have been shown to relate to the functionally relevant

resting-state networks. Whole-brain modelling of brain activity combines structural connec-

tivity with local dynamical models to provide insight into the large-scale functional organiza-

tion of the human brain. In this study, we employ the graph Laplacian and its properties to

define and implement a large class of neural activity models directly on the human connec-

tome. These models, consisting of systems of stochastic integrodifferential equations on

graphs, are dubbed graph neural fields, in analogy with the well-established continuous neu-

ral fields. We obtain analytic predictions for harmonic and temporal power spectra, as well

as functional connectivity and coherence matrices, of graph neural fields, with a technique

dubbed CHAOSS (shorthand for Connectome-Harmonic Analysis Of Spatiotemporal Spec-

tra). Combining graph neural fields with appropriate observation models allows for estimat-

ing model parameters from experimental data as obtained from electroencephalography

(EEG), magnetoencephalography (MEG), or functional magnetic resonance imaging

(fMRI). As an example application, we study a stochastic Wilson-Cowan graph neural field

model on a high-resolution connectome graph constructed from diffusion tensor imaging

(DTI) and structural MRI data. We show that the model equilibrium fluctuations can repro-

duce the empirically observed harmonic power spectrum of resting-state fMRI data, and pre-

dict its functional connectivity, with a high level of detail. Graph neural fields natively allow

the inclusion of important features of cortical anatomy and fast computations of observable

quantities for comparison with multimodal empirical data. They thus appear particularly suit-

able for modelling whole-brain activity at mesoscopic scales, and opening new potential

avenues for connectome-graph-based investigations of structure-function relationships.
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Author summary

The human brain can be seen as an interconnected network of many thousands neuronal

“populations”; in turn, each population contains thousands of neurons, and each is con-

nected both to its neighbors on the cortex, and crucially also to distant populations thanks

to long-range white matter fibers. This extremely complex network, unique to each of us,

is known as the “human connectome graph”. In this work, we develop a novel approach

to investigate how the neural activity that is necessary for our life and experience of the

world arises from an individual human connectome graph. For the first time, we imple-

ment a mathematical model of neuronal activity directly on a high-resolution connectome

graph, and show that it can reproduce the spatial patterns of activity observed in the real

brain with magnetic resonance imaging. This new kind of model, made of equations

implemented directly on connectome graphs, could help us better understand how brain

function is shaped by computational principles and anatomy, but also how it is affected by

pathology and lesions.

Introduction

The spatiotemporal dynamics of human resting-state brain activity is organized in functionally

relevant ways, with perhaps the best-known example being the “resting-state networks” [1].

How the repertoire of resting-state brain activity arises from the underlying anatomical struc-

ture, i.e. the connectome, is a highly non-trivial question: it has been shown that structural

connections imply functional ones, but that the converse is not necessarily true [2]; further-

more, specific discordant attributes of structural and functional connectivity have been found

by network analyses [3, 4]. Research on structure-function questions can be broadly divided

into data-driven (analysis), theory-driven (modelling), and combinations thereof. In this

work, we combine techniques from graph signal processing (analysis) and neural field equa-

tions (modelling) to outline a promising new approach for the investigation of whole-brain

structure-function relationships.

A recent trend of particular interest in neuroimaging data analysis is the application of

methods from the field of graph signal processing [5–10]. In these applications, anatomical

information obtained from DTI and structural MRI is used to construct the connectome
graph [11], and combined with functional imaging data such as BOLD-fMRI or EEG/MEG

to investigate structure-function relationships in the human brain (see [12, 13] for reviews).

The workhorse of graph signal processing analysis is the graph Laplacian operator, or simply

graph Laplacian. Originally formulated as the graph-equivalent of the Laplace-Beltrami

operator for Riemannian manifolds [14, 15], the graph Laplacian is now established as a

valuable tool in its own right [12]. The eigenvectors of the graph Laplacian provide a gener-

alization of the Fourier transform to graphs, and therefore also a complete orthogonal basis

for functions on the graph. In the context of the human connectome graph, the eigenvectors

of the graph Laplacian are referred to as connectome harmonics, by analogy with the har-

monic eigenfunctions of the Laplace-Beltrami operator. Of relevance to the current work,

several connectome harmonics have been shown to be related to specific resting-state net-

works [11]. More recent studies have provided additional evidence for this claim [16, 17],

and others used a similar approach to explain how distinct electrophysiological resting-state

networks emerge from the structural connectome graph [18]. Furthermore in [11], for the

first time to the best of our knowledge, a model of neural activity making use of the graph
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Laplacian was implemented, and used to suggest the role of Excitatory-Inhibitory dynamics

as possible underlying mechanism for the self-organization of resting-state activity patterns.

In other very recent work [19, 20] techniques based on the graph Laplacian were employed

to model EEG and MEG oscillations. Considering these developments, the combination of

neural activity modelling and graph signal processing techniques appears as a promising

direction for further inquiry.

Whole-brain models are models of neural activity that are defined on the entire cortex and

possibly on subcortical structures. This is generally achieved either by parcellating the cortex

into a network of a few dozens of macroscopic, coupled regions of interest (ROIs), or by

approximating the cortex as a bidimensional manifold, and studying continuous integrodiffer-

ential equations in a flat or spherical geometry (see [21] for a review). In this study, relying on

graph signal processing methods such as the graph Laplacian and graph filtering [7, 9], we

show how to define and implement a large class of whole-brain models of neural activity on

arbitrary metric graphs (that is, graphs equipped with a distance metric), and in particular on

an unparcellated, mesoscopic-resolution human connectome. These models consist of systems

of stochastic integrodifferential equations on graphs, and we refer to them as graph neural
fields by analogy with their continuous counterparts. We obtain analytic expressions for har-

monic and temporal power spectra, as well as functional connectivity and coherence matrices

of graph neural fields, with a technique dubbed CHAOSS (shorthand for Connectome-Har-
monic Analysis Of Spatiotemporal Spectra). When combined with appropriate observation

models, graph neural fields can be fitted to and compared with functional data obtained from

different imaging modalities such as EEG/MEG, fMRI, and positron emission tomography

(PET). Graph neural fields can take into account many physical properties of the cortex, and

provide a computationally efficient and versatile modelling framework that is tailored for con-

nectome-graph-based structure-function investigations, particularly suitable for modelling

whole-brain activity on mesoscopic scales. Graph neural fields present immediate application

in the investigation of the relationship between individual anatomy, pathology, lesions, neuro-

pharmacological alterations, with functional brain activity; and furthermore provide a model-

based approach to test novel graph signal processing neuroimaging hypotheses. While here we

focus on the human connectome as a prime application for graph neural fields, the mathemati-

cal framework can also be used to implement and analyze single-neuron models directly on

the connectome graphs of simple organisms, such as C. Elegans, whose full neuronal pathways

have been experimentally mapped [22].

In Results, we implement, analyze, and numerically simulate a stochastic Wilson-Cowan

graph neural field model, first on a one-dimensional graph with 1000 vertices, and then on a

single-subject multimodal connectome consisting of approximately 18000 cortical vertices

and 15000 white matter tracts. The simplified context of a one-dimensional graph is useful to

illustrate the effect of graph properties, such as distance weighting and non-local edges, on

model dynamics; moving on to a real-world application, we show that the model imple-

mented on the full connectome can reproduce the experimentally observed harmonic power

spectrum of resting-state fMRI data, and predict the fMRI functional connectivity matrix

with a high level of detail. In Methods, we describe the general framework of graph neural

fields, and show how to derive analytic expressions for harmonic and temporal power spec-

tra, as well as coherence and functional connectivity matrices (CHAOSS). Methodological

generalizations, full linear stability analysis of the Wilson-Cowan graph neural field model,

and an implementation of the damped-wave equation on the human connectome graph, are

provided in S1–S4 Appendices.
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Results

Stochastic Wilson-Cowan equations on graphs

The Wilson-Cowan model [23] is a widely used and successful model of cortical dynamics. In

this section we show how to use the framework of graph neural fields to implement the sto-

chastic Wilson-Cowan equations on an arbitrary graphs equipped with a distance metric, and

how to compute spatiotemporal observables (CHAOSS). We then illustrate the effects of dis-

tance-weighting and non-local graph edges on model dynamics in the simplified context of a

one-dimensional graph, before moving on to a real-world application with fMRI data.

In continuous space, the stochastic Wilson-Cowan model is described by the following sys-

tem of integrodifferential equations:

tE
@E
@t
¼ � dEEþ S½aEEðKEE � EÞ � aIEðKIE � IÞ þ P� þ sxE; ð1Þ

tI
@I
@t
¼ � dII þ S½aEIðKEI � EÞ � aIIðKII � IÞ þ Q� þ sxI; ð2Þ

where� denotes a convolution integral, and we have omitted for brevity the spatiotemporal

dependency of E(x, t), I(x, t), ξE(x, t) and ξI(x, t). This model posits the existence of two neuro-

nal populations (Excitatory and Inhibitory) at each location in space. The fractions of active

neurons in each population (E, I) evolve according to a spontaneous decay with rate dE and dI,

a sigmoid-mediated activation term containing the four combinations of population interac-

tions (E-E, I-E, E-I, I-I) as well as the subcortical input terms P and Q, stochastic noise realiza-

tions ξE and ξI of intensity σ, and with the timescale parameters τE and τI. The propagation of

activity and interaction among neuronal populations is modeled by spatial convolution inte-

grals with four, potentially different, kernels (KEE, KIE, KEI, KII). For arbitrary spatially sym-

metric kernels, convolution integrals can be formulated on graphs as linear matrix-vector

products (Eq (28)). Table 1 summarizes the meaning of symbols in the Wilson-Cowan

equations.

Table 1. Meaning of symbols in the Wilson-Cowan equations.

Symbol Meaning

E Fraction of active Excitatory neurons in local populations.

I Fraction of active Inhibitory neurons in local populations.

τE, τI Excitatory/Inhibitory timescale parameters.

dE, dI Excitatory/Inhibitory spontaneous activity decay rates.

S[x] Sigmoid function 1/(1+ e−x).
αEE, αIE, αEI, αII Strength of connectivity between pairs of neuronal populations.

KEE, KIE, KEI, KII Convolution kernels in continuous space, corresponding filters on graphs.

σEE, σIE, σEI, σII Standard deviation of Gaussian kernels/filters.

P Subcortical input to Excitatory populations.

Q Subcortical input to Inhibitory populations.

σ Noise amplitude.

ξE, ξI Noise realizations.

The Wilson-Cowan equations model the spatiotemporal dynamics of interactions among Excitatory and Inhibitory

neuronal populations. Note that each of the four possible pairs of population interactions is described by a distinct

kernel/filter. Here, we use four Gaussian kernels of different sizes.

https://doi.org/10.1371/journal.pcbi.1008310.t001
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Thus, the stochastic Wilson-Cowan graph neural field model can be formulated as:

tE
dE
dt
¼ � dEEþ S½aEEKEEE � aIEKIEI þ P� þ sxE; ð3Þ

tI
dI
dt
¼ � dII þ S½aEIKEIE � aIIKIII þ Q� þ sxI; ð4Þ

where E, I, ξE and ξI are functions on the graph, i.e. vectors of size n, where n is the number of

vertices in the graph. The convolution integrals are implemented via the graph-filters K��,
which are matrices of size (n, n). In particular, for the case of Gaussian kernels, the filters are

given by (Table 2):

KEE ¼ Ues2
EEL=2UT; KIE ¼ Ues2

IEL=2UT; ð5Þ

KEI ¼ Ues2
EIL=2UT; KII ¼ Ues2

IIL=2UT; ð6Þ

where Δ = UT ΛU denotes the distance-weighted graph Laplacian and its diagonalization (Eqs

(22 and 23)). Note that each kernel has a different size parameter σ��, effectively allowing differ-

ent spatial ranges for Excitatory and Inhibitory interactions, without requiring a Mexican-hat

kernel. Importantly, the inclusion of a stochastic noise term in the model formulation allows

for characterization of resting-state activity as noise-induced fluctuations about a stable

steady-state (E�, I�) [24].

Wilson-Cowan model CHAOSS

Having defined the Wilson-Cowan graph neural field equations, we wish to apply the Connec-
tome-Harmonic Analysis Of Spatiotemporal Spectra to characterize the dynamics of resting-

state fluctuations in neural activity. CHAOSS predictions, combined with a suitable observa-

tion model, can then be compared with empirical neuroimaging data, for example EEG, MEG,

or fMRI. To do this, we obtain the linearized Wilson-Cowan equations for the evolution of a

Table 2. Spatial convolution kernels in Euclidean, Fourier, and graph domains.

Kernel Euclidean domain Fourier domain K̂ g

Gaussian e� x2=2s2 e� s2k2=2 es2lk=2

Exponential e−α|x| 1

a2þk2
1

a2 � lk

Mexican hat ð1 � ðx=sÞ2Þe� x2=2s2 k2e� s2k2=2 � lkes
2lk=2

Rectangular rect(ax) sinc k
2pa

� �

sinc
ffiffiffiffiffiffi
� lk
p

2pa

� �

Triangular tri(ax) sinc2 k
2pa

� �

sinc2

ffiffiffiffiffiffi
� lk
p

2pa

� �

This table provides examples of commonly used continuous convolution kernels and their graph-domain equivalents. In short, substituting k2 with −λk in the Fourier

transform of a continuous kernel provides its graph-domain translation. The choice of kernel and the value of kernel parameters (for example the size σ of a Gaussian

kernel) have a significant influence on model dynamics. Normalization factors are omitted. The function sinc is defined as sinc(x) = sin(πx)/(πx).

https://doi.org/10.1371/journal.pcbi.1008310.t002
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perturbation about a steady state:

tE
dE
dt
¼ � dEEþ aaEEKEEE � aaIEKIEI þ sxE; ð7Þ

tI
dI
dt
¼ � dII þ baEIKEIE � baIIKIII þ sxI; ð8Þ

where the scalar, steady-state-dependent parameters a and b are:

a ¼ dEE
�ð1 � dEE

�Þ; b ¼ dII
�ð1 � dII

�Þ: ð9Þ

Derivation of the linearized equations and their full linear stability analysis can be found in

S4 Appendix. In the graph Fourier domain, Eqs (7 and 8) are diagonalized and can be recast in

the standard form:

dûk

dt
¼ Jkûk þ

ffiffiffi
B
p

x̂k; ð10Þ

where the vector u contains the concatenation of population activities on the graph E and I, ξ
contains the concatenation of noise realizations ξE and ξI. The hat notation û indicates the

graph Fourier transform, and k = 1, . . ., n indexes the graph Laplacian eigenmodes. For the

Wilson-Cowan model with Gaussian kernels, the Jacobian of the kth eigenmode is:

Jk ¼

�
dE
tE
þ a

tE
aEEes

2
EElk=2 � a

tE
aIEes

2
IElk=2

b
tI
aEIes

2
EIlk=2 � b

tI
aIIe

s2
IIl=2 �

dI
tI

2

6
6
6
6
4

3

7
7
7
7
5
; ð11Þ

where λk is the kth graph Laplacian eigenvalue, and:

B ¼
s2=t2

E 0

0 s2=t2
I

" #

: ð12Þ

In terms of the elements of the matrices Jk and B, the two-dimensional harmonic-temporal

power spectrum of the Excitatory neuronal population activity is (Eq (41)):

½SkðoÞ�E ¼
½B�

00
ð½Jk�

2

11
þ o2Þ þ ½Jk�

2

01
½B�

11

ð½Jk�00
½Jk�11

� ½Jk�01
½Jk�10

� o2Þ
2
þ o2ð½Jk�00

þ ½Jk�11
Þ

2
: ð13Þ

The double-digits numerical subscripts refer to the row-column element of the respective

matrix. Eq (13) describes the power of Excitatory activity, in the kth eigenmode, at temporal

frequency ω. It can be used to compute the separate harmonic and temporal power spectra, as

well as the functional connectivity and coherence matrices of the model. Equivalent formulas

for the Inhibitory population can also be derived.

By integrating [Sk(ω)]E over all temporal frequencies, an explicit expression for the har-

monic power spectrum of Excitatory activity can be obtained:

HEðkÞ ¼
½B�

00
ð½Jk�00

½Jk�11
� ½Jk�01

½Jk�10
Þ þ ½Jk�

2

11
½B�

00
þ ½Jk�

2

01
½B�

11

2ð½Jk�01
½Jk�10

� ½Jk�00
½Jk�11
Þð½Jk�00

þ ½Jk�11
Þ

: ð14Þ

Similarly, the temporal power spectrum can be obtained by summing [Sk(ω)]E over all har-

monic eigenmodes (Eq (42)). Eqs (13) and (14) represent a general result that does not only
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apply to the Wilson-Cowan model. In fact, these equations describe the power spectra of sto-

chastic equilibrium fluctuations for the first population of any graph neural field model with

two interacting populations and a first-order temporal differential operator. The specific shape

of the power spectra will depend on the model formulation and on its parameters.

Effects of distance-weighting and non-local connectivity. Distance-weighting of graph

edges, presence of non-local connectivity, and changes in model parameter values can have

significant effects on dynamics of graph neural fields. To demonstrate this, we implement the

stochastic Wilson-Cowan model in the simplified context of a one-dimensional graph with

1000 vertices. Numerical simulations were carried out with a time-step δt = 5 � 10−5 seconds,

for a total time of 20 seconds of simulated activity (4 � 105 time-steps). The parameter set for

the resulsts shown in Figs 1–3 is reported in S1 Table. In Fig 4, the value of σIE is increased by a

factor of 20, with everything else unchanged, as an illustrative example of the influence of ker-

nel parameters on model dynamics.

To show the effects of distance-weighting in graph neural fields, we note how, for the

parameter set of S1 Table, increasing the distance between vertices leads to the emergence of

an oscillatory resonance that eventually destabilizes the steady state and gives way to limit-

cycle activity. Keeping the number of vertices constant, increasing the vertex spacing h alters

Fig 1. Effects of distance-weighting on graph neural field dynamics. (A) The harmonic and (B) temporal power spectra of Excitatory activity equilibrium

fluctuations in the one-dimensional graph for vertex spacing h = 10−4 m. A larger vertex spacing, for example h = 2 � 10−4 m, renders the steady state

unstable. The dashed black lines correspond to the theoretical prediction and the red lines are obtained through numerical simulations. (C) The Excitatory

activity functional connectivity obtained by analytic predictions and numerical simulations.

https://doi.org/10.1371/journal.pcbi.1008310.g001

Fig 2. Suppression of oscillatory resonance by non-local connectivity. (A) The harmonic and (B) temporal power spectra of Excitatory activity

equilibrium fluctuations in the one-dimensional graph for vertex spacing h = 10−4 m, after the addition of a non-local edge between vertices 250 and 750.

The dashed black lines correspond to the theoretical prediction and the red lines are obtained through numerical simulations. (C) The Excitatory activity

functional connectivity obtained by analytic predictions and numerical simulations. Compare with Fig 1 to note the visible suppression of oscillatory

resonance in the temporal power spectrum, and the change in functional connectivity engendered by a single non-local edge.

https://doi.org/10.1371/journal.pcbi.1008310.g002
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the stability of the steady state from broadband activity (h = 10−5m), to oscillatory resonance

(h = 10−4m), to oscillatory instability (h = 2 � 10−4m). This result demonstrates that the dynam-

ics of graph neural fields are dependent on the metric properties of the graph, and hence indi-

cate the necessity of employing the distance-weighted graph Laplacian in the context of graph

neural fields modelling. The combinatorial (binary) graph Laplacian captures the topology,

but not the geometry, of the graph, and in this sense does not take into account the physical

properties of the cortex. The harmonic and temporal power spectra, as well as the functional

connectivity matrix, are shown in Fig 1 for the case with h = 10−4m.

The presence of fast, long-range connectivity can impact the power spectrum and func-

tional interactions of equilibrium fluctuations, as well as the stability of steady-states. To

illustrate this, we add a single non-local edge between vertices 250 and 750 to the one-

dimensional graph with h = 10−4m. The Euclidean distance between these two vertices is

500 � h = 5 � 10−2m = 5cm. In the healthy brain, myelination allows activity propagation along

white-matter fibers to take place at speeds * 200 times greater than local surface propagation

[25]. To model myelination, we set the length of the non-local edge to be the Euclidean

Fig 3. Abortion of pathological oscillations by non-local connectivity. (A) The harmonic and (B) temporal power spectra of Excitatory activity

equilibrium fluctuations in the one-dimensional graph for vertex spacing h = 2 � 10−4 m, after the addition of a non-local edge between vertices 250 and 750.

Without the addition, the model dynamics is placed in an unstable limit-cycle regime. The dashed black lines correspond to the theoretical prediction and

the red lines are obtained through numerical simulations. (C) The Excitatory activity functional connectivity obtained by analytic predictions and

numerical simulations.

https://doi.org/10.1371/journal.pcbi.1008310.g003

Fig 4. Emergence of multiple temporal power peaks by long-range inhibition. (A) The harmonic and (B) temporal power spectra of Excitatory activity

equilibrium fluctuations in the one-dimensional graph, with the size of the Gaussian kernel controlling Inhibitory to Excitatory interactions σIE increased

by a factory of 20, and everything else unchanged with respect to Fig 3. Allowing Inhibitory activity to exert its influence over larger distances here leads to

the emergence of multiple peaks in the temporal power spectrum of Excitatory activity. The dashed black lines correspond to the theoretical prediction and

the red lines are obtained through numerical simulations. (C) The Excitatory activity functional connectivity obtained by analytic predictions and

numerical simulations.

https://doi.org/10.1371/journal.pcbi.1008310.g004
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distance between the vertices, divided by a factor of 200 (similarly to the construction of the

human connectome graph Laplacian, where the length of white-matter edges is set to be their

3D path-length distance along DTI fibers, divided by a factor of 200). Therefore, the effective

length of the non-local edge is 2.5 � 10−4m. Fig 2A and 2B shows the effects of the presence of

the non-local edge on the harmonic and temporal power spectra of the equilibrium fluctua-

tions. The most pronounced effect is damping of the oscillatory resonance in the temporal

power spectrum, thus rendering the fluctuations more stable. Furthermore, the edge leads to a

discernible alteration in the functional connectivity (Fig 2C).

Interestingly, when the model operates in the pathological i.e. non-stable regime (h = 2 �

10−4m), addition of a single non-local edge stabilizes the steady state, thus leading to healthy

equilibrium fluctuations (Fig 3B). The non-local edge also creates a large increase in the func-

tional connectivity between the vertices involved, and a change in the pattern in neighboring

vertices (Fig 3C). As noted above, these effects of long-range connectivity are observed if the

effective length of the non-local edge is small enough for non-local activity propagation to

interact with local activity propagation. For these one-dimensional simulations, this happens if

the speed factor is larger than *50.

In Fig 4, we show an illustrative example of how kernel parameters can lead to significant

alterations in observable model dynamics. Increasing the size of the Gaussian kernel control-

ling the Inhibitory to Excitatory interaction (σIE) by a factor of 20 leads to the emergence of

multiple peaks in the temporal power spectrum of the model. Increasing the value further, for

example by a factor of 30, renders the steady state unstable. All other parameters, presence of

non-local edge, and distance-weighting were left unchanged with respect to Fig 3.

Application to resting-state fMRI

To illustrate the applicability of graph neural fields, we study the stochastic Wilson-Cowan

graph neural field on a single-subject multimodal connectome, and investigate whether the

model can capture empirical observables of resting-state fMRI. The connectome is of meso-

scopic resolution, comprising of approximately 18000 cortical surface vertices (MRI) and

15000 white matter tracts (DTI). See connectome construction for details on the construction

of the weighted connectome graph Laplacian.

Graph neural fields on the human connectome reproduce the harmonic power spec-

trum of resting-state fMRI. First, we obtain the harmonic power spectrum of resting-state

fMRI, according to its definition, as the temporal mean of the squared graph Fourier transform

of the fMRI timecourses. Note that the estimation of the fMRI harmonic power spectrum does

not use a single timepoint, but the entire available timecourse. To regularize the empirical

spectrum, we compute its log-log binned median with 300 bins, following [26]; eigenmodes

above k = 15000 contain artifacts due to reaching the limits of fMRI spatial resolution, and are

thus removed. We optimize the model parameters with a basinhopping procedure [27], aiming

to minimize the residual difference between empirical and theoretical harmonic power spectra.

The parameter set producing the best-fit harmonic power spectrum is reported in S2 Table. In

the fitting, we allow for a linear rescaling as a simple observation model connecting the theo-

retical and empirical spectra:

HfMRIðkÞ ¼ bHEðkÞ; ð15Þ

where HfMRI(k) is the harmonic power spectrum of the fMRI data, HE(k) is the analytically pre-

dicted harmonic power spectrum of Excitatory neural activity (Eq (14)), and β is a linear

rescaling parameter. To verify the accuracy of the analytic prediction, we carry out numerical

simulations of the model Eqs (7 and 8) on the connectome, with a time-step value δt = 10−4
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seconds, and an observation time of 106 time-steps, corresponding to 100 seconds of simulated

activity. S5 Fig shows snapshots of the simulated model and of resting-state fMRI, at different

times. Fig 5 shows the harmonic power spectra of fMRI data and of the stochastic Wilson-

Cowan graph neural field model, with the parameter set of S2 Table. The model is clearly able

to reproduce the fMRI harmonic power spectrum, showing excellent agreement between ana-

lytically predicted, numerically simulated, and empirically observed harmonic power spectra.

Previous studies have shown that the harmonic power spectrum of resting-state fMRI can be

Fig 5. Stochastic Wilson-Cowan graph neural field model captures the resting-state fMRI harmonic power spectrum. The

theoretical (dashed black line) and numerical (red line) predictions from the stochastic Wilson-Cowan graph neural field model, with the

parameters of S2 Table, are in excellent agreement with the empirically observed fMRI harmonic spectrum (cyan line). The numerical

spectrum was obtained by taking the median of three independent simulations.

https://doi.org/10.1371/journal.pcbi.1008310.g005

PLOS COMPUTATIONAL BIOLOGY Graph neural fields

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008310 January 28, 2021 10 / 29

https://doi.org/10.1371/journal.pcbi.1008310.g005
https://doi.org/10.1371/journal.pcbi.1008310


used to differentiate between a placebo condition and the altered state of consciousness

induced by a serotonergic hallucinogen, lysergic acid diethylamide (LSD) [26]. LSD is known

to have profound effects on perception and cognition; furthermoe, together with other psyche-

delic compounds, it is currently under investigation in the treatment of several psychiatric

conditions [28–30]. Thus, the ability to reproduce the harmonic power spectrum of resting-

state fMRI shows that graph neural fields are capable of capturing measures of neural dynam-

ics relevant for brain function and clinical applications.

Graph neural fields on the human connectome predict the vertex-wise functional con-

nectivity of resting-state fMRI. The CHAOSS method also provides an analytic prediction

of the model functional connectivity (correlation) matrix (Eq (46)). In Figs 6 and 7 we com-

pare the resting-state fMRI functional connectivity with the theoretical prediction from the

Fig 6. Resting-state fMRI functional connectivity matrix. Connectome-wide, vertex-wise, single-subject, resting-state fMRI functional connectivity

matrix. Zoom in to appreciate the patterns present in the data, in particular the two large blocks (top-left and bottom-right) corresponding to the two

hemispheres, and the many intra-hemispheric patterns. Compare with the functional connectivity predicted by the stochastic Wilson-Cowan graph neural

field (Fig 7). The light-blue and light-green rectangles indicate the insets visualized in Figs 8 and 9.

https://doi.org/10.1371/journal.pcbi.1008310.g006
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Wilson-Cowan graph neural field model with the parameters of S2 Table. The matrices are

shown for the full connectome, at vertex-wise resolution, with no parcellation or smoothing.

Vertex-wise fMRI functional connectivity on a connectome with 18000 vertices is naturally

somewhat more noisy than the model analytic prediction, hence the choice of a slightly wider

color-scale for the fMRI matrices, which emphasizes patterns in the data and deemphasizes

background noise. Functional connectivity patterns in the empirical and theoretically pre-

dicted matrices are in clear agreement; two main blocks of connectivity can be distinguished,

corresponding to the hemispheres, in the top-left and bottom-right of the matrices, as well as

many corresponding intra-hemispheric features. In Figs 8 and 9, we show insets, at different

scales, of the empirical and theoretical matrices. Because of the high number of vertices in the

Fig 7. Stochastic Wilson-Cowan graph neural field model predicts the experimental functional connectivity matrix. The CHAOSS prediction for the

connectome-wide, vertex-wise, single-subject functional connectivity matrix of the stochastic Wilson-Cowan graph neural field model with the parameters

of S2 Table. Compare with Fig 6 to appreciate how the model predicts the patterns of functional connectivity observed in the fMRI data. The light-blue and

light-green rectangles indicate the insets visualized in Figs 8 and 9. Note that we did not fit the fMRI functional connectivity of the model to the data, but

only the harmonic power spectrum.

https://doi.org/10.1371/journal.pcbi.1008310.g007
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connectome, we recommend looking at the connectivity matrices on-screen, at the highest

possible resolution; high-fidelity PDF versions of these figures are provided in S6–S9 Figs. We

remark that we did not fit the functional connectivity matrix of the model to the data, but only

the harmonic power spectrum. Besides the success and applicability of the graph neural field

Fig 8. Stochastic Wilson-Cowan graph neural field model predicts the experimental functional connectivity matrix (inset 1). (A) An inset of the

vertex-wise, resting-state fMRI functional connectivity matrix for a single subject. (B) The same inset for the Wilson-Cowan graph neural field model with

the parameters of S2 Table.

https://doi.org/10.1371/journal.pcbi.1008310.g008

Fig 9. Stochastic Wilson-Cowan graph neural field model predicts the experimental functional connectivity matrix (inset 2). (A) An inset of the

vertex-wise, resting-state fMRI functional connectivity matrix for a single subject. (B) The same inset for the Wilson-Cowan graph neural field model with

the parameters of S2 Table.

https://doi.org/10.1371/journal.pcbi.1008310.g009
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approach, this result also demonstrates that the harmonic power spectrum is a robust measure

of brain activity, capable of efficiently capturing features of neural dynamics with a high level

of detail.

Discussion

In this work, we have presented a general approach to whole-brain neural activity modelling

on unparcellated, multimodal connectomes (graph neural fields), by combining tools from

graph signal processing and neural field equations. We developed a technique to analytically

compute observable quantities (CHAOSS). We showed that a Wilson-Cowan stochastic graph

neural field model can reproduce the empirically observed harmonic spectrum of resting-state

fMRI, and predict its functional connectivity matrix at vertex-wise resolution. Graph neural

fields can address some limitations of existing modelling frameworks, and therefore represent

a complementary approach resulting particularly suitable for mesoscopic-scale modelling and

connectome-graph-based investigations. To discuss advantages and limitations of our

approach, it is useful to contextualize it within the landscape of whole-brain models.

Existing whole-brain models can be broadly divided into two classes, according to whether

they incorporate short-range local connectivity or not. Region-based models only take into

account long-range connectivity between dozens or few hundreds of macroscopic ROIs,

whereas surface-based models directly incorporate short-range local connectivity as well [31,

32]. It is furthermore possible to distinguish between discrete and continuous surface-based

models. Discrete surface-based models are defined on a (highly-sampled) cortex and are there-

fore finite-dimensional. In several studies, region-based and discrete surface-based models are

collectively referred to as networks of neural masses [21, 33, 34]. Continuous, surface-based

models are better known as neural field models, are defined on the entire cortex, and are infi-

nite-dimensional [32, 35, 36]. Mathematically, discrete surface-based models are finite-dimen-

sional systems of ordinary differential equations, whereas neural field models are partial

integro-differential equations.

Region-based models are constructed by parcellating the cortex into a number of regions-

of-interest (ROIs), placing a local model in each ROI, and connecting them according to a

given connectome (see [2, 21, 34] for reviews). The ROIs are usually obtained from structural

or functional cortical atlases and the number of ROIs is in the order of a hundred or less.

Region-based mass models are characterized by the type of local models and how they are con-

nected i.e. if the connections are weighted or not, Excitatory or Inhibitory, and if transmission

delays are incorporated. A wide variety of local models has been used in the literature, includ-

ing neural mass models, self-sustained oscillators, chaotic deterministic systems, circuits of

spiking neurons, normal-form bifurcation models, rate models, and density models [2, 35].

Region-based models have proven valuable in understanding various aspects of large-scale cor-

tical dynamics and their roles in cognitive and perceptual processing, but they are limited in

one important respect: they do not allow studying the spatiotemporal organization of cortical

activity on scales smaller than several squared centimeters and their effects on large-scale pat-

tern formation. This is due to the fact that the dynamics within ROIs are described by a single

model without spatial extent. This prevents studying the mesoscopic mechanisms underlying a

large class of cortical activity patterns that have been observed in experiments, including trav-

eling and spiral waves, sink-source dynamics, as well as their role in shaping macroscopic

dynamics [21]. This is a significant limitation, particularly because the role of mesoscopic spa-

tiotemporal dynamics in cognitive and perceptual processing is increasingly being recognized

and experimentally studied [37, 38]. Graph neural fields present the advantage of allowing

explicit modelling of activity propagation dynamics with spatiotemporal convolutions and
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graph differential equations on mesoscopic-resolution connectomes, thereby overcoming this

limitation.

Whole-brain models that incorporate short-range connectivity are referred to as surface-
based because they are generally defined either on high-resolution surface-based representa-

tions of the cortex [31, 39, 40] or on the entire cortex viewed as a continuous medium. We will

refer to these types of models as discrete and continuous surface-based models, the latter of

which are known as neural field models [24, 32, 36, 41]. Numerically simulating discrete sur-

face-based models is much more computationally demanding than simulating region-based

models, as the former typically have dimensions that are one to two orders higher than those

of the latter. Numerically simulating neural field models is even more demanding and requires

heavy numerical integration in combination with specific analytical techniques [42]. More-

over, simulating neural field models requires special preparation of cortical meshes to ensure

accuracy and numerical stability. [39, 40, 43–45]. Graph neural fields have the advantage of

being implementable directly on multimodal structural connectomes obtained from MRI and

DTI, thereby minimizing anatomical approximations, and being limited in this sense only by

the quality and resolution of the available structural data. The cortex in graph neural field need

not be a flat or spherical manifold, but can reflect the specific anatomy of each subject, allow-

ing in-depth analyses of the effects of individual anatomical differences on functional activity;

such analyses can then be compared across subjects thanks to the common language provided

by the connectome harmonics. Graph neural fields can take into account important physical

properties of the cortex, such as folding, non-uniform thickness, hemispheric asymmetries,

non-homogeneous structural connectivity, and white-matter projections, since all these ana-

tomical features can be absorbed in the distance-weighted graph Laplacian. In particular, we

note that the extension to connectomes including cortical thickness, hence allowing activity to

propagate not only tangentially but also perpendicularly to the cortical surface, is of particular

interest. Cortical layers can already be distinguished with ultra-high field fMRI, and are

thought to subserve different functions [46]. The ability of graph neural fields to account for

cortical thickness and layers in dynamical models of neural activity is therefore a promising

property for future development [47].

For ease of exposition, here we have focused mainly on neural field models with purely spa-

tial kernels. Although this might be sufficient for modelling wide-band activity such as BOLD

fMRI, the large-scale organization of oscillatory activity as recorded with EEG and MEG sensi-

tively depends on the propagation delays of action potentials through white-matter fiber tracts

[48–50]. To model such delays, spatiotemporal kernels have been used in continues neural

field models [32, 36, 51, 52]. It is possible to extend this approach to graph neural fields, by

using spatiotemporal graph convolutions, rather than purely spatial convolutions. This yields

graphs filters that are more general than those in Eq (26) in that they depend not only on the

eigenvalues of the graph Laplacian, but also on temporal frequency (S1 Appendix). The pro-

posed method to fit graph neural fields to experimentally observed harmonic power spectra or

functional connectivity matrices (CHAOSS) is straightforward to generalize as well, since the

only difference is the appearance of complex exponentials in the linearized model equations in

the temporal Fourier domain. With this extension, graph neural fields allow for the formula-

tion of any spatiotemporal neural field model on arbitrary metric graphs.

Graph neural fields come equipped with computationally efficient analytic and numerical

tools. The CHAOSS method allows fast computation of quantities such as the harmonic-tem-

poral spectra or connectivity matrices without resorting to numerical simulations, which are

enormously more computationally expensive than the direct evaluation of analytic expres-

sions. This implies that optimization of model parameters (for example to fit an observable

quantity such as the harmonic spectrum, as we do here) can be carried out without the
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computational burden of numerical simulations. Furthermore, linear or linearized graph neu-

ral field equations are diagonalized by the graph Fourier transform, allowing very efficient

numerical simulations in the graph Fourier domain. For a graph neural field on a connectome

with n vertices, carrying out numerical simulations in the graph Fourier domain reduces the

dimensionality by a factor of n, which is a vast improvement for high-resolution connectomes.

Hence, graph neural field analysis (CHAOSS) and numerical simulations (linear or linearized

models in the graph Fourier domain) can be carried out with a minimal amount of computa-

tional power.

Our approach presents several limitations. First, the CHAOSS method as presented here,

and the dimensionality reduction of linear or linearized equations in the graph Fourier

domain, require the model parameters to be space-independent. That is, model parameters are

assumed to have the same value for all vertices in the connectome. This assumption was also

used in previous studies of continuous neural fields [53], and in our case has the advantage of

allowing mathematical analyses and simulations that, as mentioned above, are scalable to

higher-resolution connectomes with little computational cost. However, there are more bio-

physically realistic models that require space-dependent parameters. For example, some recent

neural mass network models incorporate neuronal receptors and their densities, which are

known to vary across the cortex [54–56]. The CHAOSS method can in principle be extended

to account for space-dependent model parameters, and numerical simulations of graph neural

fields can also be carried out with space-dependent parameters, but both would become signif-

icantly more computationally demanding than their counterparts with space-independent

parameters. A possible approach to preserve computational efficiency, while characterizing

regional differences, could be to absorb all the relevant space-dependent information into the

graph Laplacian, maintaining space-indepedent model parameters. Similarly to the idea of dif-

ferentially weighing white matter edges to account for myelination, one might weigh differen-

tially graph edges within specific ROIs or specific subsets of vertices. Second, it is important to

point out that our approach is subject to the limitations of tractography in regards to false posi-

tive and true negatives; and that the connectome used here does not include subcortical struc-

tures, nor projections between the cortex and subcortical structures. Future studies could

attempt to employ connectomes including subcortical structures and connections. Third, the

formulation of convolutions on graphs presented here is restricted to spatially symmetric ker-

nels (but see the caption of S1 Fig for some considerations on indirect ways to obtain asym-

metric kernels). Finally, another important limitation is the use of an undirected and time-

independent connectome graph. For maximal generality and biophysical realism, one might

want to study a directed, or even time-dependent (plastic) structural connectome. Such exten-

sions would be very challenging, if at all feasible.

Immediate applications of graph neural fields can be found in the comparison of harmonic

spectra, functional connectivity, and coherence matrix with single-subject empirical data

obtained from different neuroimaging modalities such as fMRI and MEG, as well as different

conditions, for example health, pathology, and neuropharmacologically-induced altered states

of consciousness [26]. Investigating the effects of a reduced myelination speed factor, or

pruned white-matter fibers, could be an interesting approach to modelling the effects of patho-

logical or age-related structural alterations of white matter on the dynamics of functional activ-

ity. Other possible developments include the implementation of more biophysically realistic

models, potentially including space-dependent parameters, and the use of a cortical connec-

tome that includes cortical thickness, accounting for activity propagation across layers perpen-

dicularly to the surface. Aside from whole-brain resting-state modelling, graph neural fields

may also be used for modelling specific ROIs and stimulus-evoked brain activity. In particular,

because of the known retinotopic mapping between visual stimuli and neural activity, the
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visual cortex presents itself as a very interesting ROI for such developments [57]. Moving

beyond neuronal populations and even the human brain, the mathematical framework of

graph neural fields may also be used to implement single-neuron models directly on the full

connectome graphs of simple organisms, such as C. Elegans, whose neuronal pathways have

been experimentally mapped at the single-neuron level [22].

Conclusion

In summary, in this study we described a class of whole-brain neural activity models which we

refer to as graph neural fields, and showed that they can be used to capture dynamics of brain

activity obtained from neuroimaging methods efficiently and with a high level of detail. The

formulation of graph neural fields relies on existing concepts from the field of graph signal

processing, namely the distance-weighted graph Laplacian operator and graph filtering, in

combination with modelling concepts such as neural field equations. This framework allows

inclusion of realistic anatomical features, analytic predictions of harmonic-temporal power

spectra, correlation, and coherence matrices (Connectome-Harmonic Analysis Of Spatiotempo-
ral Spectra, CHAOSS), and efficient numerical simulations. We illustrated the practical use of

the framework by reproducing the harmonic spectrum and predicting the functional connec-

tivity of resting-state fMRI with a stochastic Wilson-Cowan graph neural field model. Future

work could build on the methods and results presented here, both from theoretical and applied

standpoints.

Methods

Laplacian operators on graphs

In this section we provide a derivation of the distance-weighted graph Laplacian, or simply

graph Laplacian, in terms of graph differential operators. The distance-weighted graph Lapla-

cian is distinguished from the combinatorial graph Laplacian often used in analysis studies

[11], as it allows geometrical properties of the cortex to be taken into account, which is neces-

sary to implement physically realistic graph neural field models.

The combinatorial Laplacian. Consider an undirected graph with n vertices. The binary

adjacency matrix ~A is defined as:

~Aij ¼
1 if i � j;

0 otherwise:

(

ð16Þ

where i* j means that vertices i and j are connected by an edge. The graph’s degree matrix ~D
is a diagonal matrix whose diagonal entries are given by:

~Dii ¼
Xn

j¼1

~Aij: ð17Þ

It hence counts the number of edges for each vertex i. The binary or combinatorial graph
Laplacian, denoted by ~D, is defined as:

~D ¼ ~A � ~D: ð18Þ

The combinatorial graph Laplacian and its normalized version do not carry information

about the distances between cortical vertices and therefore are invariant under topological but

non-isometric deformations of graph. Neural activity modeled in terms of the combinatorial

graph Laplacian therefore is a topological graph invariant, whereas real neural activity does
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depend on the metric properties of the graph. The combinatorial graph Laplacian, however,

can be adjusted so as to take into account the metric properties of the graph, yielding the dis-
tance-weighted graph Laplacian. Below, we provide a derivation of the weighted graph Lapla-

cian in terms of the graph directional derivaties of a graph function.

The distance-weighted graph Laplacian. Let f be a a function defined on the vertices of a

graph, and let M be the graph’s distance matrix. Thus, the (i, j) entry Mij of M equals the dis-

tance between vertices i and j in a particular metric. We note that for this derivation, it is irrele-

vant how M is obtained. In the context of connectomes, the elements of M can be defined in

terms of suitably scaled Euclidean distances, geodesic distances over the cortical manifold, or

as the lengths of white matter fibers connecting vertices. Different distance metrics can also be

combined for the construction of connectome graphs containing multiple types of edges, as

we do here (see Data preprocessing and connectome graph construction), and as has been

done in some previous studies [58]. The first-order graph directional derivative @j fi of f at ver-

tex i in the direction of vertex j is:

@ jfi ¼
~Aij

Mij
ðfj � fiÞ: ð19Þ

Note that according to this definition, @j fi = 0 if vertex j is not connected to vertex i, and

that @i fi = 0. Also note that @j is a linear operator on the vector space of graph signals. Further-

more, since ~A2
ij ¼

~Aij, the second-order graph directional derivative @
2

j fi of f at vertex i in the

direction of vertex j is defined as:

@ jð@ jfiÞ ¼ @
2

j fi ¼
~Aij

M2
ij

ðfi � fjÞ: ð20Þ

Following the definition of the Laplacian operator in Euclidean space as the sum of second-

order partial derivatives, the distance-weighted graph Laplacian, or simply graph Laplacian Δ is

defined as:

Dfi ¼ �
Xn

j¼1

@
2

j fi: ð21Þ

To see the relation with the combinatorical graph Laplacian, we note that Δ can be written

in matrix form as:

D ¼ A � D; ð22Þ

where A and D are the distance-weighted adjacency matrix and distance-weighted degree

matrix, respectively, which are defined as Aij ¼
~Aij=M2

ij and Dii ¼
Pn

j¼1
Aij, respectively. Thus,

the weighted graph Laplacian can be obtained by using the weighted versions of the adjacency

and degree matrices in the definition of the combinatorial graph Laplacian.

The graph Fourier transform. Diagonalization of the graph Laplacian gives:

D ¼ ULUT; ð23Þ

where U is an orthogonal matrix containing the eigenvectors of Δ, and Λ is a diagonal matrix

containing the corresponding eigenvalues λ1� λ2�, � � �,� λn� 0. The graph Fourier trans-

form of a function u(t) on the graph is defined by:

ûðtÞ ¼ UTuðtÞ; ð24Þ
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where the transformation UT expresses u(t) in the eigenbasis of Δ. The vertex-domain signal u
(t) can be recovered again by applying the inverse graph Fourier transform U−1 = U to ûðtÞ.
For clarity, note that the graph Fourier transform is not related to the temporal Fourier trans-

form and that u(t) does not have to depend on time to apply it. For grid graphs (i.e. graphs

whose drawing, embedded in some Euclidean space, forms a regular tiling), the graph Fourier

transform is equivalent, in the continuum limit, to the spatial Fourier transform in Euclidean

space. However, the graph Fourier transform can also be applied to more complex graphs, pos-

sibly with non-local edges, such as the human connectome.

Convolution kernels on graphs

In order to define neural field equations on graphs, we need a graph-theoretical analog of the

continuous spatial convolution:

ðK � uÞðx; tÞ ¼
Z 1

� 1

Kðx � x0Þuðx0; tÞdx0: ð25Þ

To obtain this, we use the convolution theorem to represent the convolution in the spatial

Fourier domain as K̂ðkÞûðk; tÞ, where k is the spatial wavenumber. When the kernel is real-val-

ued and spatially symmetric, its Fourier transform is real-valued and even in k, so that K̂ðkÞ
can be viewed as a function of −k2. In continuous space, −k2 is the eigenvalue of the spatial

Fourier basis function eikx under the Laplace operator. On graphs, the distance-weighted

graph Laplacian Δ implements a generalized version of the Laplace operator, and the graph

Fourier basis is defined by its eigenvectors U. Hence, the graph filter K̂ g corresponding to the

convolution (K� u)(x, t) can be defined by substituting λk for the values −k2 in K̂ð� k2Þ:

K̂ g ¼ DiagðK̂ðl1Þ; � � � ; K̂ðlnÞÞ: ð26Þ

In the graph Fourier domain, the filtered (convolved) signal is hence per definition given

by:

ûfiltðtÞ ¼ K̂ gûðtÞ: ð27Þ

Applying the inverse graph Fourier transform U, we obtain the filtered signal in the graph

domain:

ufiltðtÞ ¼ UK̂gûðtÞ ¼ UK̂gUTuðtÞ ¼ KguðtÞ; ð28Þ

where we have defined Kg ¼ UK̂gUT , the graph domain representation of the filter. Eqs (27

and 28) can be interpreted as an analogy for the convolution theorems on graphs: the matrix-

multiplication implementing a convolution in the graph domain becomes a point-wise prod-

uct in the graph Fourier domain, since K̂ g is a diagonal matrix. This analogy can be employed

to define spatiotemporal convolutions (S1 Appendix), and reaction-diffusion models (S2

Appendix), on arbitrary metric graphs. For example, the damped-wave and telegrapher’s equa-

tions (S3 Appendix), of interest in the context of modelling the propagation of neural signals,

can be implemented on the human connectome (S2–S4 Figs).

Examples of graph kernels. Table 2 lists several commonly used continuous spatial ker-

nels and their equivalent filter on graphs. On grid graphs, the filters simply act as discretized

versions of their continuous counterparts. However, this approach generalizes to arbitrary

metric graphs, potentially with non-local edges, such as the human connectome, and is there-

fore more broader in scope than grid-based discretizations of continuous convolution kernels.
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Graph neural fields

Continuous neural field models describe the dynamics of cortical activity u(x, t) at time t and

cortical location x 2 O. Here,O 2 R3 denotes the cortical manifold embedded in three-dimen-

sional Euclidean space. Depending on the physical interpretation of the state variable u(x, t),
neural fields come in two types, which we will refer to in the rest of the text as Type 1 and Type
2. This short description is by no means meant to be exhaustive, and only contains the

required background to define graph neural fields; comprehensive treatments of continuous

neural fields are provided in [36, 53].

In Type 1 neural fields [53], the state variable u(x, t) describes the average membrane poten-

tial at location x and time t. The general form of a neural field model of Type 1 is:

Dtuðx; tÞ ¼
Z

O

Kðdðx; x0ÞÞS½uðx0; tÞ�dx0 þ sxðx; tÞ; ð29Þ

where σξ(x, t) is the noise term, d(x, x0) is the geodesic distance between cortical locations x
and x0, K is the spatial kernel of the neural field that describes how the firing-rate S[u(x0, t)] at

location x0 affects the voltage at location x, and S is the firing-rate function that converts volt-

ages to firing-rates. Dt is a placeholder for the linear temporal differential operator that models

synaptic dynamics, and can take different forms depending on the model under investigation.

In modelling resting-state cortical activity, ξ(x, t) is usually taken to be a stationary stochastic

process. For simplicity, we will assume the stochastic term ξ(x, t) to be spatiotemporally white

noise (but in principle, colored noise could be used as well). The distance function d(x, x0)
between cortical locations x and x0, as well as the integration over the cortical manifold O,

assume that O is equipped with a Riemannian metric. A natural choice is the Euclidean metric

induced by the embedding of the cortical manifold in three-dimensional Euclidean space.

In Type 2 neural field models [59, 60], the state variable u(x, t) denotes the fraction of active

cells in a local cell population at location x and time t, and hence takes values in the interval

[0, 1]. Type 2 neural field models have the form:

Dtuðx; tÞ ¼ S
Z

O

Kðdðx; x0ÞÞuðx0; tÞdx0
� �

þ sxðx; tÞ; ð30Þ

where S denotes the activation function that maps fractions to fractions and hence takes values

in the interval [0, 1] and thus has a different interpretation from the firing-rate function in

Type 1 neural field models. Mathematically, the only difference between Type 1 and Type 2

neural field models is the placement of the non-linear function S. In practice, most neural field

models are defined by two or more neural field equations, where each equation describes the

dynamics of a different neuronal population, and its interaction with the other cell types. For

example, the state variable of the Wilson-Cowan neural field model (Eqs (1 and 2)) is two-

dimensional and its components correspond to Excitatory and Inhibitory neuronal

populations.

In theoretical studies on neural field models, the cortex is usually assumed to be flat:, i.e.

O ¼ R2
(cortical sheet) or O ¼ R1

(cortical line) or a closed subset thereof (but see [61] for a

detailed theoretical study of a neural field model on the sphere). The major simplification that

occurs in this case is that the cortical metric reduces to the Euclidean metric:

dðx; x0Þ ¼ kx � x0k; ð31Þ

and, as a consequence, the integrals in Eqs (29) and (30) reduce to spatial convolutions, so that

Fourier methods can be used in the analysis. For spatially symmetric kernels, i.e. K(−x) = K(x)
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for all x 2 R, convolutions integrals can be translated to graphs using the methods of the previ-

ous section Convolution kernels on graphs.

Thus, a graph neural field of Type 1 is a model of the form:

DtuðtÞ ¼ KgS½uðtÞ� þ sxðtÞ; ð32Þ

and a graph neural field of Type 2 is a model of the form:

DtuðtÞ ¼ S½KguðtÞ� þ sxðtÞ: ð33Þ

When more than one type of neuronal population is included, as for the Wilson-Cowan

model, or when the temporal differential operator Dt is of order higher than one, the continu-

ous neural fields reduce to systems of ordinary differential equations on graphs.

The continuous neural fields in Eqs (29) and (30) are described by partial integro-differen-

tial equations in which the integration in done over space. Continuous neural fields can also

be described by spatiotemporal integral equations by viewing the temporal differential opera-

tor Dt as a temporal integral, which leads to a more general class of models. By defining spatio-

temporal convolutions on graphs (S1 Appendix), this larger class of neural fields can be

formulated on graphs as systems of temporal integral equations. To make this explicit, we use

the definition of the spatiotemporal graph filtering operator Kg� to write out the ith compo-

nent of u, for a neural field of Type 1:

uiðtÞ ¼
Z 1

� 1

Xn

j¼1

Kij
g ðsÞS½ujðt � sÞ�

 !

dsþ s
Z t

� 1

xiðt
0Þdt0: ð34Þ

Thus, the spatiotemporal integrals in continuous neural fields are replaced by temporal

integrals in graph neural fields, and the spatial structure of the continuous kernel is incorpo-

rated into the graph filter Kij
g . The same applies to neural fields of Type 2. Furthermore, for

separable kernels, and for special choices of the temporal component of the kernel, the spatio-

temporal integral equation can be reduced to a partial integro-differential equation [32, 36].

For graph neural fields there exists an equivalent subset of models that can be represented by a

system of ordinary integro-differential equations.

Eqs (32 and 33) define graph neural fields for the case of purely spatial kernels K(x, t) =

K(x). In case of a purely temporal kernel K(x, t) = gΘ(t), we obtain the following systems of

ordinary differential equations, for a graph neural field of Type 1:

DtuðtÞ ¼ ðgY � S½u�ÞðtÞ þ sxðtÞ; ð35Þ

and for a graph neural field of Type 2:

DtuðtÞ ¼ S½ðgY � uÞðtÞ� þ sxðtÞ: ð36Þ

In case of a separable kernel K(x, t) = w(x)gΘ(t) we obtain the following systems of ordinary

differential equations, for a graph neural field of Type 1:

DtuðtÞ ¼ ðgY � KgS½u�ÞðtÞ þ sxðtÞ; ð37Þ

and for a graph neural field of Type 2:

DtuðtÞ ¼ S½ðgY � KguÞðtÞ� þ sxðtÞ: ð38Þ
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Relating graph neural fields to experimental observables

Connectome-Harmonic Analysis Of Spatiotemporal Spectra (CHAOSS). To character-

ize the spatiotemporal dynamics of resting-state brain activity, we derive analytic predictions

for harmonic and temporal power spectra, functional connectivity, and coherence matrices of

graph neural fields. For simplicity, we carry out the derivation for the case of space-indepen-

dent model parameters. It is possible to extend the method to the case with space-dependent

parameters, but all computations would be significantly more burdensome. For graph neural

fields with space-independent parameters, the linear or linearized model equations for each

graph Laplacian eigenmode can be described as the following p-dimensional system, where p
is the number of neuronal population types:

DtûkðtÞ ¼ JkûkðtÞ þ
ffiffiffi
B
p

x̂kðtÞ: ð39Þ

Taking the temporal Fourier transform we obtain:

ûkðoÞ ¼ ½DðoÞ � Jk�
� 1

ffiffiffi
B
p

x̂kðoÞ; ð40Þ

where D(ω) denotes the temporal Fourier transform of Dt. Abbreviating the graph filter

K̂ g ¼ ½DðoÞ � Jk�
� 1

, the cross-spectral matrix Sk(ω) of the kth eigenmode is given by:

SkðoÞ ¼ E½ûkðoÞûkðoÞ
y
� ¼ K̂ g

ffiffiffi
B
p
E½x̂kðoÞx̂kðoÞ

y
�
ffiffiffi
B
p

K̂ yg ¼ K̂ gBK̂ yg ; ð41Þ

where † denotes the conjugate transpose and E denotes the expected value. Colored noise can

be modeled by letting B depend on ω, although this is usually not done in neural field model-

ling studies. Another possible generalization is to let B depend on the harmonic eigenmode.

Eq (41) gives a closed-form expression for the cross-spectral matrix of the kth eigenmode.

Hence, its sth diagonal entry [Sk(ω)]s, with s = 1, . . ., p, represents the power of the sth neuronal

population, in the kth eigenmode, at temporal frequency ω. The temporal power spectrum

Ts(ω) of the sth neuronal population is obtained by summing over harmonic eigenmodes:

TsðoÞ ¼ 2
Xn

k¼1

½SkðoÞ�s; ð42Þ

where the factor of 2 arises because on graphs, k ranges only over positive integers between 1

and n. Similarly, the harmonic power spectrum of the sth neuronal population Hs(k) is

obtained by integrating over the temporal frequency ω:

HsðkÞ ¼
1

2p

Z þ1

� 1

½SkðoÞ�sdo: ð43Þ

When combined with a suitable observation model, these predictions can be compared

with or fitted to experimental data from different neuroimaging modalities.

Functional connectivity. Furthermore, it is possible to compute the correlation matrix of

brain activity for each neuronal population. To construct the covariance matrix of a neuronal

population activity Ss across all graph vertices, we first construct the covariance matrix Ŝs in

the graph Fourier domain. The covariance matrix of the sth neuronal population in the graph

Fourier domain Ŝs is given by:

Ŝs ¼ DiagðHsðkÞÞ: ð44Þ
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The covariance matrix across all vertices is obtained by transforming back to the graph

domain:

Ss ¼ UŜsUT: ð45Þ

The functional connectivity (correlation) matrix Fs, which is often used in fMRI resting-

state studies, is obtained by normalizing the covariance matrix, so that its entries are in the

range [−1, 1]:

Fs ¼ ðS
þ

s Þ
� 1=2

SsðS
þ

s Þ
� 1=2

; ð46Þ

where Sþs denotes Ss with all off-diagonal entries set to zero. Seed-based connectivity of the jth

vertex is measured by the jth row (or column) of Fs. Eq (46) provides an analytic prediction for

the vertex-wise functional connectivity of graph neural fields.

Coherence matrix. From the linearized model equations one can also derive the coher-

ence matrix, which measures the strength and latency of interactions between pairs of vertices

as a function of frequency ω, and is often used in EEG and MEG studies [62]. If the noise is

assumed to be white, non-linear connectivity measures such as the phase-locking value and

amplitude correlations can be analytically computed from the coherence matrix [63]. For sim-

plicity, we derive the coherence matrix for the case of a single neuronal population and space-

independent parameters.

The derivation of the coherence matrix is similar to that of the functional connectivity, and

starts by expressing the linearized model equations in the vertex domain:

DtuðtÞ ¼ JuðtÞ þ
ffiffiffi
B
p

x̂ðtÞ: ð47Þ

Transforming Eq (47) to the temporal Fourier domain and taking expectations yields the

cross-spectral matrix Sv(ω) in the vertex domain:

SvðoÞ ¼ E½uðoÞuðoÞ
y
� ¼ KgBKyg ; ð48Þ

where Kg = [D(ω) − J]−1. The coherence matrix C(ω) is obtained by normalization of the cross-

spectral matrix in the vertex domain:

CðoÞ ¼ ðSþv ðoÞÞ
� 1=2SvðoÞðSþv ðoÞÞ

� 1=2
; ð49Þ

where Sþv ðoÞÞ denotes Sv(ω) with its off-diagonal entries to zero. The (i, j) entry of C(ω) is the

coherence between the cortical activity at vertices i and j.

Data preprocessing and connectome graph construction

We use structural MRI and DTI data obtained from the Human Connectome Project (https://

db.humanconnectome.org/) to construct the individual subject anatomical connectome graph.

In short, MRI data is employed to obtain local graph edges based on the surface mesh; DTI

data is employed to add long-range white-matter connections to the graph. The main differ-

ence with previous studies analyzing brain activity in terms of the anatomical connectome

graph Laplacian [11] is that instead of constructing the combinatorial (binary) graph Lapla-

cian, here we construct a distance-weighted graph Laplacian (Eqs (19–22)). This allows us to

take into account physical distance properties of the cortex that are relevant for graph neural

fields, and that are otherwise lost. Specifically, for an local surface edge between vertices i and

j, the element Mij of the distance matrix M is defined as their 3D Euclidean distance; for a non-

local white-matter edge, Mij is defined as the distance along the respective DTI fiber path,

divided by a factor of 200. This value is chosen to reflect the myelination of white matter fibers,

PLOS COMPUTATIONAL BIOLOGY Graph neural fields

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008310 January 28, 2021 23 / 29

https://db.humanconnectome.org/
https://db.humanconnectome.org/
https://doi.org/10.1371/journal.pcbi.1008310


which is known to allow neural activity to propagate at speeds *200 times greater in white

matter fibers, in comparison with local surface propagation [25]. Resting-state BOLD fMRI

timecourses from the Human Connectome Project were minimally preprocessed (coregistra-

tion, motion correction), resampled on the respective subject connectome graph, and

demeaned.

Supporting information

S1 Table. Parameter set for 1D analysis and simulations. This parameter set was obtained

by a qualitative comparison of the Wilson-Cowan model’s harmonic and temporal spectra

with empirical data, and used to illustrate how graph properties affect neural field dynamics in

one dimension.

(PDF)

S2 Table. Parameter set for connectome-wide analysis and simulations. This parameter set

was obtained by quantiatively fitting the Wilson-Cowan model’s harmonic power spectrum to

that of resting-state fMRI data, and used for all connectome-wide analysis and numerical sim-

ulations.

(PDF)

S1 Fig. Spatial convolution examples on 1-dimensional graphs. To illustrate spatial convolu-

tion on graphs, we apply different spatial convolution filters from Table 2 to an impulse func-

tion centered on the middle vertex of a one-dimensional grid-graph with spacing h = 1 units.

The resulting functions, normalized to have unit amplitude, show the shapes of the graph ker-

nels. Note that the rectangular kernel convolution operator in Panel (E) exhibits the Gibbs phe-
nomenon [64], which is a known feature of finite Fourier representations of functions with

jump discontinuities. Solutions to this problem have been offered [65], but they are beyond

the scope of the current work. Thus, we suggest avoiding spatial kernels with jump discontinu-

ities in the context of graph neural fields. Open boundary conditions can be implemented by

extending the graph beyond the image size, and periodic boundaries by adding edges connect-

ing vertices on opposite sides of the graph. We also note that, if desired, spectral kernels can be

obtained using polynomial approximation schemes, which obviates the need to diagonalize

the graph Laplacian matrix [66]. For large datasets (for example natural images databases), it

might be computationally advantageous to apply convolutions with symmetric kernels

through graph filters, rather than with standard discrete convolution methods. Blurring/

smoothing a 2-dimensional image with a spatial Gaussian kernel is equivalent to applying the

graph Gaussian kernel to the image-function defined on a 2-dimensional square-grid graph.

Spatial convolutions on graphs become linear matrix-vector products, which are highly opti-

mized and easily parallelizable operations; the bulk of the computational cost for graph convo-

lutions consists in the initial computation of the filter itself, which has to be performed only

once per kernel. The approach described here is limited to symmetric kernels. In some special

cases, asymmetric kernels may be practically obtained by introducing suitable asymmetries in

the graph edges. For example, consider a grid graph in two dimensions, with additional edges

connecting bottom-left and top-right vertices of each square in the grid. Because of the broken

lattice symmetry, a Gaussian kernel on this non-grid graph will behave like a spatially elliptic

Gaussian, angled at 45 degrees, analogously to modelling a spatially asymmetric diffusion pro-

cess on the graph.

(TIF)

S2 Fig. The damped-wave equation on the human connectome gives rise to propagation

with characteristic speed and wavelength. Shown are snapshots of simulated cortical activity
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that is governed by the damped wave equation with time-step δt = 1 and parameters a = 3 �

105, b = 5 � 103.

(TIF)

S3 Fig. Varying the parameters of the damped-wave equation alters the dynamics of propa-

gation on the human connectome. Shown are snapshots of simulated cortical activity that is

governed by the damped wave equation with time-step δt = 1 and parameters a = 1.5 � 105,

b = 2.5 � 103.

(TIF)

S4 Fig. Dynamics of the damped-wave equation on the human connectome include non-

local propagation along white-matter fibers. Shown are snapshots of simulated cortical

activity that is governed by the damped wave equation with time-step δt = 1 and parameters

a = 1.5 � 105, b = 2.5 � 103.

(TIF)

S5 Fig. Resting-state fMRI and numerical simulation of the Wilson-Cowan graph neural

field model on the human connectome. Panel A shows resting-state brain activity, as fluctua-

tions of the BOLD fMRI signal about the mean at each vertex. Panel B shows snapshots of

activity from the stochastic Wilson-Cowan graph neural field model, simulated using the

parameters of S2 Table. The model activity was temporally downsampled to match the TR of

fMRI data, and rescaled by
ffiffiffi
b
p

to match the scale of the BOLD signal. No spatial or temporal

smoothing was applied. Note that the two hemispheric surfaces are physically separate, and

inter-hemispheric propagation is allowed through white matter fibers.

(TIF)

S6 Fig. FMRI functional connectivity. High-resolution PDF version of Fig 6.

(PDF)

S7 Fig. Model functional connectivity. High-resolution PDF version of Fig 7.

(PDF)

S8 Fig. Functional connectivity comparison (inset 1). High-resolution PDF version of Fig 8.

(PDF)

S9 Fig. Functional connectivity comparison (inset 2). High-resolution PDF version of Fig 9.

(PDF)

S1 Appendix. Spatiotemporal convolutions on graphs. Here, we generalize the formulation

of spatial convolutions on graphs to spatiotemporal convolutions on graphs, allowing the defi-

nition of a broader class of graph neural fields.

(PDF)

S2 Appendix. Reaction-diffusion neural activity models on graphs. In this section we show

how graph filters can also be used to implement the graph equivalents of neural activity models

that can be directly written as partial differential equations [36, 53] and, among others, com-

prise damped wave and reaction-diffusion equations.

(PDF)

S3 Appendix. Damped wave and telegrapher’s equation on graphs. The damped-wave

describes the dynamics of simultaneous diffusion and wave propagation, and is thus of interest

in the context of modelling activity propagation in neural tissue [53]. Nonlinear variants of the

wave equation on graphs have also been the subject of previous analytical studies [67]. Here,

we solve the graph equivalent of the damped-wave equation and of the telegrapher’s equation,
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which is of interest in the context of modelling action potentials [68].

(PDF)

S4 Appendix. Wilson-Cowan model linear stability analysis. In order to compute meaning-

ful spatiotemporal observables with CHAOSS for a given set of parameters, it is first necessary

to find a steady state and compute its stability to perturbations. Here, we provide solutions to

the steady-state equations and a general linear stability analysis for the Wilson-Cowan model

on graphs.

(PDF)
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